Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Zoolog Sci ; 41(1): 77-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587520

RESUMO

Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursor for producing significant androgens such as11-ketotestosterone, 5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.


Assuntos
Androgênios , Testosterona , Masculino , Animais , Feminino , Ovário , Testículo , Vertebrados
2.
Hypertens Res ; 47(4): 1017-1023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38337004

RESUMO

Increased blood pressure variability (BPV) was shown to be associated with cardiovascular morbidities and/or mortalities. There are various types of BPV depending on time intervals of BP measurements, ranging from beat-to-beat to visit-to-visit or year-to-year. We previously found that continuous infusion of noradrenaline (NA) for 14 days increased short-term BPV every 15 min in rats. The aims of this study were to examine (1) whether NA infusion increases very short-term beat-to-beat BPV, (2) the effects of azelnidipine and hydralazine on NA-induced BPV, and (3) whether baroreceptor reflex sensitivity (BRS) is affected by NA or NA plus those vasodilators. Nine-week-old Wistar rats infused subcutaneously with 30 µg/h NA were orally treated with or without 9.7 mg/day azelnidipine or 5.9 mg/day hydralazine over 14 days. BP levels were continuously monitored via abdominal aortic catheter with a telemetry system in an unrestrained condition. Standard deviations (SDs) were used to evaluate beat-to-beat BPV and BPV every 15 min which was obtained by averaging BP levels for 10-s segment at each time point. BRS was determined by a sequence analysis. Continuous NA infusion over 14 days increased average BP, beat-to-beat BPV, and BPV every 15 min, lowering BRS. Comparing the two vasodilators, hydralazine reduced BP elevation by NA; meanwhile, azelnidipine alleviated BPV augmentation, preserving BRS, despite a smaller BP reduction. Thus, NA infusion increased both very short- and short-term BPV concomitantly with impaired BRS, while azelnidipine had an inhibitory effect, possibly independent of BP-lowering, on those types of BPV and impairment of BRS.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Di-Hidropiridinas , Norepinefrina , Vasodilatadores , Ratos , Animais , Pressão Sanguínea , Vasodilatadores/farmacologia , Norepinefrina/farmacologia , Ratos Wistar , Hidralazina/farmacologia
3.
Cell Tissue Res ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369645

RESUMO

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.

4.
Sci Adv ; 9(22): eadf4803, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267361

RESUMO

Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.


Assuntos
Plantas , Tylenchoidea , Animais , Transdução de Sinais , Tylenchoidea/fisiologia
5.
Peptides ; 166: 171035, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263541

RESUMO

Excessive activation of the sympathetic nervous system is involved in cardiovascular damage including cardiac hypertrophy. Natriuretic peptides are assumed to exert protective actions for the heart, alleviating hypertrophy and/or fibrosis of the myocardium. In contrast to this assumption, we show in the present study that both atrial and C-type natriuretic peptides (ANP and CNP) potentiate cardiac hypertrophic response to noradrenaline (NA) in rats. Nine-week-old male Wistar rats were continuously infused with subcutaneous 30 micro-g/h NA without or with persistent intravenous administration of either 1.0 micro-g/h ANP or CNP for 14 days. Blood pressure (BP) was recorded under an unrestrained condition by a radiotelemetry system. Cardiac hypertrophic response to NA was evaluated by heart weight/body weight (HW/BW) ratio and microscopic measurement of myocyte size of the left ventricle. Mean BP levels at the light and dark cycles rose by about 20 mmHg following NA infusion for 14 days, with slight increases in HW/BW ratio and ventricular myocyte size. Infusions of ANP and CNP had no significant effects on mean BP in NA-infused rats, while two natriuretic peptides potentiated cardiac hypertrophic response to NA. Cardiac hypertrophy induced by co-administration of NA and ANP was attenuated by treatment with prazosin or atenolol. In summary, both ANP and CNP potentiated cardiac hypertrophic effect of continuously infused NA in rats, suggesting a possible pro-hypertrophic action of natriuretic peptides on the heart.


Assuntos
Fator Natriurético Atrial , Norepinefrina , Ratos , Animais , Masculino , Ratos Wistar , Norepinefrina/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Pressão Sanguínea , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Natriurético Encefálico/farmacologia
6.
J Diabetes Investig ; 14(5): 648-658, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36729958

RESUMO

AIMS/INTRODUCTION: Glucagon, a peptide hormone produced from proglucagon, is involved in the pathophysiology of diabetes. Plasma glucagon levels are currently measured by sandwich enzyme-linked immunosorbent assay (ELISA), but the currently used sandwich ELISA cross-reacts with proglucagon-derived peptides, thereby providing incorrect results in subjects with elevated plasma proglucagon-derived peptide levels. We aimed to develop a more broadly reliable ELISA for measuring plasma glucagon levels. MATERIALS AND METHODS: A new sandwich ELISA was developed using newly generated monoclonal antibodies against glucagon. After its validation, plasma glucagon levels were measured with the new ELISA and the currently used ELISA in subjects who underwent laparoscopic sleeve gastrectomy (LSG) and in outpatients with suspected glucose intolerance. The ELISA results were compared with those from liquid chromatography-high resolution mass (LC-HRMS) analysis, which we previously established as the most accurate measuring system. RESULTS: The new ELISA has high specificity (<1% cross-reactivities) and high sensitivity (a lower range of 0.31 pmol/L). Plasma glucagon values in the subjects who underwent laparoscopic sleeve gastrectomy and some outpatients with suspected glucose intolerance differed between the new ELISA and the currently used ELISA. These subjects also showed markedly high plasma glicentin levels. Despite the elevated plasma glicentin levels, the new ELISA showed better positive correlation with LC-HRMS than did the currently used ELISA. CONCLUSIONS: The new ELISA enables more accurate measurement of plasma glucagon than the currently used ELISA, even in subjects with elevated proglucagon-derived peptide levels. It should be clinically useful in elucidating the pathophysiology of individual diabetic patients.


Assuntos
Diabetes Mellitus , Intolerância à Glucose , Hormônios Peptídicos , Humanos , Glucagon , Proglucagon , Glicentina , Intolerância à Glucose/diagnóstico , Glucose , Ensaio de Imunoadsorção Enzimática/métodos
7.
Animals (Basel) ; 13(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830409

RESUMO

During mammalian gestation, large amounts of progesterone are produced by the placenta and circulate for the maintenance of pregnancy. In contrast, primary plasma estrogens are different between species. To account for this difference, we compared the expression of ovarian and placental steroidogenic genes in various mammalian species (mouse, guinea pig, porcine, ovine, bovine, and human). Consistent with the ability to synthesize progesterone, CYP11A1/Cyp11a1, and bi-functional HSD3B/Hsd3b genes were expressed in all species. CYP17A1/Cyp17a1 was expressed in the placenta of all species, excluding humans. CYP19A/Cyp19a1 was expressed in all placental estrogen-producing species, whereas estradiol-producing HSD17B1 was only strongly expressed in the human placenta. The promoter region of HSD17B1 in various species possesses a well-conserved SP1 site that was activated in human placental cell line JEG-3 cells. However, DNA methylation analyses in the ovine placenta showed that the SP1-site in the promoter region of HSD17B1 was completely methylated. These results indicate that epigenetic regulation of HSD17B1 expression is important for species-specific placental sex steroid production. Because human HSD17B1 showed strong activity for the conversion of androstenedione into testosterone, similar to HSD17B1/Hsd17b1 in other species, we also discuss the biological significance of human placental HSD17B1 based on the symptoms of aromatase-deficient patients.

8.
Front Endocrinol (Lausanne) ; 13: 852636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250893

RESUMO

The regulation of fetal development by bioactive substances such as hormones and neuropeptides derived from the gestational mother is considered to be essential for the development of the fetus. On the other hand, it has been suggested that changes in the physiological state of the pregnant mother due to various factors may alter the secretion of these bioactive substances and induce metabolic changes in the offspring, such as obesity, overeating, and inflammation, thereby affecting postnatal growth and health. However, our knowledge of how gestational maternal bioactive substances modulate offspring physiology remains fragmented and lacks a systematic understanding. In this mini-review, we focus on ghrelin, which regulates growth and energy metabolism, to advance our understanding of the mechanisms by which maternally derived ghrelin regulates the growth and health of the offspring. Understanding the regulation of offspring growth by maternally-derived ghrelin is expected to clarify the fetal onset of metabolic abnormalities and lead to a better understanding of lifelong health in the next generation of offspring.


Assuntos
Desenvolvimento Fetal , Grelina , Feminino , Feto , Humanos , Obesidade , Gravidez
9.
Animals (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679897

RESUMO

17ß-hydroxysteroid dehydrogenase type 3 (HSD17B3) converts androstenedione (A4) into testosterone (T), which regulates sex steroid production. Because various mutations of the HSD17B3 gene cause disorder of sex differentiation (DSD) in multiple mammalian species, it is very important to reveal the molecular characteristics of this gene in various species. Here, we revealed the open reading frame of the ovine HSD17B3 gene. Enzymatic activities of ovine HSD17B3 and HSD17B1 for converting A4 to T were detected using ovine androgen receptor-mediated transactivation in reporter assays. Although HSD17B3 also converted estrone to estradiol, this activity was much weaker than those of HSD17B1. Although ovine HSD17B3 has an amino acid sequence that is conserved compared with other mammalian species, it possesses two amino acid substitutions that are consistent with the reported variants of human HSD17B3. Substitutions of these amino acids in ovine HSD17B3 for those in human did not affect the enzymatic activities. However, enzymatic activities declined upon missense mutations of the HSD17B3 gene associated with 46,XY DSD, affecting amino acids that are conserved between these two species. The present study provides basic information and tools to investigate the molecular mechanisms behind DSD not only in ovine, but also in various mammalian species.

10.
Sci Rep ; 11(1): 17954, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518616

RESUMO

Ghrelin, a circulating orexigenic hormone secreted from the stomach, stimulates appetite and food intake by activating the hypothalamic arcuate nucleus. Administration of exogenous ghrelin exerts anabolic effects, causing weight gain, increased adiposity, and decreased metabolism. Body temperature (BT), which is determined by the balance of heat production and heat loss, must be strictly regulated to maintain proper cellular function and metabolism. However, the role of ghrelin in thermoregulation remains unclear. In this study, we found that ghrelin was essential for decreasing BT when mice are placed under calorie restriction. Elevated ghrelin concentrations induced by fasting correlated with significant decreases in BT, a hibernation-like state called torpor. Ghrelin-deficient (Ghrl-/-) animals could not enter torpor. The BT of Ghrl-/- mice also remained high under restricted feeding, but the animals gradually entered precipitous hypothermia, indicating thermoregulatory impairment. These effects of ghrelin on thermoregulation were the result of suppression of sympathetic nervous system activity input to brown adipose tissue; in the absence of ghrelin, it was not possible to suppress uncoupling protein 1 (ucp1) expression and decrease BT in low-energy states. Together, these findings demonstrate that ghrelin is an essential circulating hormone involved in lowering BT.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Jejum/fisiologia , Grelina/metabolismo , Torpor/fisiologia , Adiposidade/fisiologia , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Glicemia , Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Metabolismo Energético/efeitos dos fármacos , Grelina/genética , Camundongos , Camundongos Knockout , Oligopeptídeos/farmacologia , Torpor/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
11.
Peptides ; 142: 170567, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964322

RESUMO

Plasma levels of the hypotensive peptides of adrenomedullin and atrial and B-type natriuretic peptides (AM, ANP, BNP) are possible biomarkers for cardiovascular diseases. Increased variability of body mass index (BMI) over a certain period of time has been reported to be associated with cardiovascular morbidity or mortality. The aim of this study is to examine clinical significance of those hypotensive peptides as biomarkers by analyzing the relationship between plasma levels of the peptides and year-by-year variability of BMI in the general population without overt cardiovascular diseases. The subjects were 427 local residents (141 males and 286 females) attending their annual health check-up, who had been examined at least 5 times over the preceding period of 10 years. They were divided into two groups of low or high variability by the median of coefficient of variation (CV) of BMI values for each gender. Plasma AM levels of those with high year-by-year variability of BMI were significantly increased, as compared to the group with low variability, in both genders; meanwhile, such a difference was not noted in plasma levels of the natriuretic peptides. No significant differences were found in the basal parameters, which could affect plasma AM level, such as age, BMI, blood pressure or serum creatinine, between two groups. In conclusion, increase in plasma AM was associated with high year-by-year variability of BMI in the general population without overt heart disease. This relationship between the two suggests that increased plasma AM level is a cardiovascular risk marker.


Assuntos
Adrenomedulina/sangue , Fator Natriurético Atrial/sangue , Índice de Massa Corporal , Doenças Cardiovasculares/diagnóstico , Peptídeo Natriurético Encefálico/sangue , Idoso , Biomarcadores , Doenças Cardiovasculares/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino
12.
Biochem Biophys Res Commun ; 559: 197-202, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33945998

RESUMO

Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.


Assuntos
Caenorhabditis elegans/metabolismo , Taquicininas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetulus , Taquicininas/química , Taquicininas/genética , Taquicininas/isolamento & purificação
13.
Front Endocrinol (Lausanne) ; 12: 657360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833737

RESUMO

Although 11-ketotestosterone (11KT) and testosterone (T) are major androgens in both teleosts and humans, their 5α-reduced derivatives produced by steroid 5α-reductase (SRD5A/srd5a), i.e., 11-ketodihydrotestosterone (11KDHT) and 5α-dihydrotestosterone (DHT), remains poorly characterized, especially in teleosts. In this study, we compared the presence and production of DHT and 11KDHT in Japanese eels and humans. Plasma 11KT concentrations were similar in both male and female eels, whereas T levels were much higher in females. In accordance with the levels of their precursors, 11KDHT levels did not show sexual dimorphism, whereas DHT levels were much higher in females. It is noteworthy that plasma DHT levels in female eels were higher than those in men. In addition, plasma 11KDHT was undetectable in both sexes in humans, despite the presence of 11KT. Three srd5a genes (srd5a1, srd5a2a and srd5a2b) were cloned from eel gonads. All three srd5a genes were expressed in the ovary, whereas only both srd5a2 genes were expressed in the testis. Human SRD5A1 was expressed in testis, ovary and adrenal, whereas SRD5A2 was expressed only in testis. Human SRD5A1, SRD5A2 and both eel srd5a2 isoforms catalyzed the conversion of T and 11KT into DHT and 11KDHT, respectively, whereas only eel srd5a1 converted T into DHT. DHT and 11KDHT activated eel androgen receptor (ar)α-mediated transactivation as similar fashion to T and 11KT. In contrast, human AR and eel arß were activated by DHT and11KDHT more strongly than T and 11KT. These results indicate that in teleosts, DHT and 11KDHT may be important 5α-reduced androgens produced in the gonads. In contrast, DHT is the only major 5α-reduced androgens in healthy humans.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Androgênios/sangue , Di-Hidrotestosterona/sangue , Gônadas/metabolismo , Proteínas de Membrana/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/análogos & derivados , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Animais , Enguias , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Receptores Androgênicos/genética , Testosterona/sangue
14.
J Steroid Biochem Mol Biol ; 210: 105847, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609691

RESUMO

Porcine steroid hormone profiles have some unique characteristics. We previously studied human and murine steroidogenesis using steroidogenic cells-derived from mesenchymal stem cells (MSCs). To investigate porcine steroidogenesis, we induced steroidogenic cells from porcine subcutaneous preadipocytes (PSPA cells), which originate from MSCs. Using cAMP, adenovirus-mediated introduction of steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP) induced the differentiation of PSPA cells into sex steroid-producing cells. Introducing SF-1/Ad4BP also induced the aldo-keto reductase 1C1 (AKR1C1) gene. Porcine AKR1C1 had 17ß-hydroxysteroid dehydrogenase activity, which converts androstenedione and 11-ketoandrostenedione into testosterone (T) and 11-ketotestosteorne (11KT). Furthermore, differentiated cells expressed hydroxysteroid 11ß-dehydrogenase 2 (HSD11B2) and produced 11KT. HSD11B2 was expressed in testicular Leydig cells and the adrenal cortex. 11KT was present in the plasma of both immature male and female pigs, with slightly higher levels in the male pigs. T levels were much higher in the male pigs. It is noteworthy that in the female pigs, the 11KT levels were >10-fold higher than the T levels. However, castration altered the 11KT and T plasma profiles in the male pigs to near those of the females. 11KT induced endothelial nitric oxide synthase (eNOS) in porcine vascular endothelial cells. These results indicate that 11KT is produced in porcine adrenal glands and testes, and may regulate cardiovascular functions through eNOS expression.


Assuntos
Glândulas Suprarrenais/metabolismo , Androgênios/metabolismo , Testículo/metabolismo , Testosterona/análogos & derivados , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 20-Hidroxiesteroide Desidrogenases/genética , 20-Hidroxiesteroide Desidrogenases/metabolismo , Adipócitos/citologia , Androstenodiona/metabolismo , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/genética , Suínos , Testosterona/metabolismo
15.
Endocr J ; 67(1): 73-80, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31611477

RESUMO

Those who smoke nicotine-based cigarettes have elevated plasma levels of ghrelin, a hormone secreted from the stomach. Ghrelin has various physiological functions and has recently been shown to be involved in regulating biological rhythms. Therefore, in this study, in order to clarify the significance of the plasma ghrelin increase in smokers, we sought to clarify how nicotine and ghrelin affect the expression dynamics of clock genes using a mouse model. A single dose of nicotine administered intraperitoneally increased plasma ghrelin concentrations transiently, whereas continuous administration of nicotine with an osmotic minipump did not induce any change in the plasma ghrelin concentration. Single administration of nicotine resulted in a transient increase in ghrelin gene expression in the pancreas but not in the stomach, which is the major producer of ghrelin. In addition, in the pancreas, the expression of clock genes was also increased temporarily. Therefore, in order to clarify the interaction between nicotine-induced ghrelin gene expression and clock gene expression in the pancreas, nicotine was administered to ghrelin gene-deficient mice. Administration of nicotine to ghrelin-gene deficient mice increased clock gene expression in the pancreas. However, upon nicotine administration to mice pretreated with octanoate to upregulate ghrelin activity, expression levels of nicotine-inducible clock genes in the pancreas were virtually the same as those in mice not administered nicotine. Thus, our findings indicate that pancreatic ghrelin may suppress nicotine-induced clock gene expression in the pancreas.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/efeitos dos fármacos , Grelina/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Pâncreas/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Estômago/efeitos dos fármacos , Fatores de Transcrição ARNTL/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/efeitos dos fármacos , Proteínas CLOCK/genética , Caprilatos/farmacologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/efeitos dos fármacos , Criptocromos/genética , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Grelina/genética , Grelina/metabolismo , Transportador de Glucose Tipo 2/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Hipotálamo/metabolismo , Camundongos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Pâncreas/metabolismo , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética
16.
J Steroid Biochem Mol Biol ; 196: 105493, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31614207

RESUMO

17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) catalyze the reduction of 17-ketosteroids and the oxidation of 17ß-hydroxysteroids to regulate the production of androgens and estrogens. Among them, 17ß-HSD type 3 (HSD17B3) is expressed almost exclusively in testicular Leydig cells and contributes to development of male sexual characteristics by converting androstenedione (A4) to testosterone (T). Mutations of HSD17B3 genes cause a 46,XY disorder of sexual development (46,XY DSD) as a result of low T production. Therefore, the evaluation of 17ß-HSD3 enzymatic activity is important for understanding and diagnosing this disorder. We adapted a method that easily evaluates enzymatic activity of 17ß-HSD3 by quantifying the conversion from A4 to T using androgen receptor (AR)-mediated transactivation. HEK293 cells were transduced to express human HSD17B3, and incubated medium containing A4. Depending on the incubation time with HSD17B3-expressing cells, the culture media progressively increased luciferase activities in CV-1 cells, transfected with the AR expression vector and androgen-responsive reporter. Culture medium from HSD17B1 and HSD17B5-expressing cells also increased the luciferase activities. This system is also applicable to detect the conversion of 11-ketoandrostenedione to 11-ketotestosterone by HSD17B3. Establishment of HEK293 cells expressing various missense mutations in the HSD17B3 gene associated with 46,XY DSD revealed that this system is effective to evaluate the enzymatic activities of mutant proteins.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Receptores Androgênicos/fisiologia , Ativação Transcricional/genética , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Células Cultivadas , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/metabolismo , Ativação Enzimática/genética , Indução Enzimática/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto/fisiologia , Transfecção
17.
Endocr J ; 66(11): 943-952, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31564683

RESUMO

Malnutrition occurs when nutrient intake is too low for any reason and occurs regardless of gender or age. Therefore, besides loss of eating or digestive functionality due to illness, malnutrition can occur when a healthy individual undergoes an extreme diet and biases their nutrition, or when athletes exerts more energy than they can replenish through food. It has recently been reported that in Japan, the mortality rate of leaner individuals is equal to or higher than that of obese people. It is important to understand what homeostatic maintenance mechanism is behind this when the body is under hypotrophic conditions. Such mechanisms are generally endocranially controlled. We address this fundamental concern in this paper by focusing on peptide hormones. We introduce a mechanism for survival in a malnourished state via the regulation of food intake and temperature. Additionally, we will discuss the latest findings and future prospects for research on changes in the endocrine environment associated with malnutrition associated with exercise. We also review changes in next-generation endocrine environments when caused by malnutrition brought on by dieting.


Assuntos
Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Desnutrição/metabolismo , Hormônios Peptídicos/metabolismo , Temperatura Corporal , Dieta Redutora , Ingestão de Energia , Epigênese Genética , Exercício Físico/fisiologia , Feminino , Grelina/metabolismo , Hormônio do Crescimento/metabolismo , Humanos , Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Neuropeptídeo Y/metabolismo , Hormônios Peptídicos/genética , Peptídeo YY/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Esportes , Termogênese
18.
Front Physiol ; 9: 1276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246807

RESUMO

The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep.

19.
Peptides ; 99: 14-19, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097254

RESUMO

Recently we found that guanylin (Gn) and its receptor, guanylyl cyclase C (GC-C), are uniquely expressed in the mesenteric macrophages of some diet-resistant rats and that double-transgenic (dTg) rats overexpressing Gn and GC-C in macrophages demonstrate reduced fatty acid synthase and fat accumulation in fat tissue even when fed a high-fat diet (HFD). Lipid accumulation and fatty acid synthase mRNA levels in cocultured dTg rat adipocytes and macrophages were reduced compared with those in adipocytes cultured with WT rat macrophages. Here, we investigated whether Interleukin-15 (IL-15) derived from Gn-GC-C-expressing macrophages regulates lipid accumulation in adipocytes. IL-15 inhibited fatty acid synthase and lipid accumulation via STAT5 in cultured adipocytes. IL-15 mRNA and protein levels in the mesenteric fat of HFD-fed dTg rats were significantly higher than those of HFD-fed WT rats. Phosphorylated STAT5 levels in the mesenteric fat of HFD-fed dTg rats were increased compared with those of HFD-fed WT rats. In addition, the mRNA level of fatty acid synthase in the mesenteric fat was lower in HFD-fed dTg rats than in HFD-fed WT rats. These results support the hypothesis that IL-15 secreted from Gn-GC-C-expressing macrophages contributes to the inhibition of fatty acid synthase and lipid accumulation in adipocytes, leading to obesity resistance.


Assuntos
Adipócitos/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Hormônios Gastrointestinais/biossíntese , Interleucina-15/biossíntese , Macrófagos/metabolismo , Peptídeos Natriuréticos/biossíntese , Receptores de Enterotoxina/biossíntese , Adipócitos/citologia , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Ácido Graxo Sintase Tipo I/genética , Hormônios Gastrointestinais/genética , Interleucina-15/genética , Macrófagos/citologia , Peptídeos Natriuréticos/genética , Ratos , Ratos Transgênicos , Receptores de Enterotoxina/genética
20.
Peptides ; 99: 134-141, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017855

RESUMO

Neuromedin U (NMU), a neuropeptide originally isolated from porcine spinal cord, has multiple physiological functions and is involved in obesity and inflammation. Excessive fat accumulation in the liver leads to non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is closely associated with obesity. NAFLD and NASH develop and progress via complex pathophysiological processes, and it remains unclear to what extend the NMU system contributes to the risk of obesity-related disorders such as NAFLD and NASH. Here, we demonstrate that the NMU system plays a role in NAFLD/NASH pathogenesis. In the normal mouse liver, NMU mRNA was not detectable, and expression of the mRNA encoding neuromedin U receptor 1 (NMUR1), the peripheral receptor of NMU, was low. However, the expression of both was significantly increased in the livers of NASH mice. Furthermore, overproduction of NMU induced the mouse liver by hydrodynamic injection, exacerbated NASH pathogenesis. These data indicate a novel role for the peripheral NMU system, providing new insights into the pathogenesis of NAFLD/NASH.


Assuntos
Regulação da Expressão Gênica , Fígado/metabolismo , Neuropeptídeos/biossíntese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Animais , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia , Receptores de Neurotransmissores/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...